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The 19FNMR spectrum1213 showed a doublet of doublets 
centered at S 120 ppm (J = 57, 14.5 Hz, with additional 
smaller couplings of 2.5 Hz). The 1H NMR spectrum showed 
a triplet of doublets centered at 5 5.9 ppm (1 proton, CH F2, 
./nh = 57,yHH = 5 Hz). 

The oxime of 7-keto-7,8,9,10-tetrahydrobenzo[a]pyrene4 

was converted into its acetate, mp 193-195 0C, which on 
heating with Pd/C in naphthalene at 200-205 0C for 2 h 
yielded after dry column chromatography15 36% 1, mp 
203-204 0C; NMR showed two exchangeable protons at <5 
4.66. Anal." (C 2 0H 1 3N)CH 1N. 

To a stirred mixture under N2 of 2.18 g of NaBF4 in 50 mL 
of dry TH F was added 2.6 mL of CF3COOH followed by 1.07 
g of 1. After 15 min at 25 0C, the mixture was cooled to —20 
to — 15 0C and 500 mg of NaNO2 was added in small portions. 
The dark brown suspension of diazonium salt formed was 
stirred for 15 min and the solid was collected, washed with dry 
THF, and dried under vacuum. This solid had an IR peak at 
2200 cm -1 (RN2

+). The dry salt, mixed with powdered dry 
KF, was added to 100 mL of boiling dry xylene. The product 
was chromatographed over basic alumina to give 290 mg of 
solid, mp 152-156 0C. Analysis showed this to be a mixture 
of 2 and benzo[a]pyrene.2-3 

The mass spectra16 agreed with the assigned structures for 
1, 2, and 7. 
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Polyether Antibiotics Synthesis. Total Synthesis 
and Absolute Configuration of the Ionophore A-23187 

Sir: 

Over the last few years the general interest in polyether 
antibiotics has risen dramatically.1 This rapidly growing class 
of compounds, produced mainly by Streptomyces organisms, 
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characteristically form lipophilic metal ion complexes which 
are effective in ion transport across lipid barriers.2 To date, the 
ionophore antibiotic A-23187 (calcimycin, la)3 appears to be 
unique in its divalent cation transport selectivity.4 Extensive 
literature is now rapidly accumulating on the application of 
this ionophore as an effective probe for the involvement of 
metal ions in the control of numerous physiological processes.5 

This communication describes the first synthesis of A-23187 
(la) and defines the absolute configuration of this natural 
product. 

Based upon oxygen anomeric effects and related stereo­
chemical considerations,6 we projected that the 1,7-dioxa-
spiro[5.5]undecane skeleton in 1 with the requisite C )4 stere-
ocenter would be readily attainable from the acyclic keto diol 
precursor 2 via acid-catalyzed ring closure (Scheme I).7 This 
internal ketalization process is undoubtedly a plausible step 
in the biosynthesis of la. We further assumed that stereo­
chemical control of the Ci5 methyl-bearing stereocenter need 
not be an issue in the enantioselective synthesis of the penul­
timate precursor 2 since acid-catalyzed equilibration of this 
center in the target molecule should afford the desired equa­
torial methyl diastereoisomer.s The intermediate 2, upon aldol 
disconnection, appeared to be readily accessible from the 
heterocyclic precursors 3 (R = H)9 and 5 and the ketone 4 
which possesses a C2 axis of symmetry with respect to skeletal 
carbons Ci0-Ci2 and Ci6-CiS-

After several abortive attempts, a practical synthesis of the 
benzoxazole moiety 5 was developed. Methyl 5-hydroxyan-
thranilate,10 upon trifluoroacylation (TFAA, C5H5N), af­
forded 6a, mp 136-138 0C, in 92% yield." A priori, we had 
anticipated that mononitration of 6a would have revealed a 
greater propensity for electrophilic substitution at C4 vs. C6, 
thereby thwarting attempts to construct the requisite amino-
phenol 6c. This concern was unfounded. Nitration (1 equiv of 
HNO3, Et2O, 25 0C) afforded a 2:1 mixture of the desired 
nitrophenol 6b" (mp 121-124 0C) and the corresponding 
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4-nitro isomer which was readily separated by silica gel chro­
matography. Catalytic reduction of 6b (10% Pd/C) to 6c1' (mp 
157-158 0C), ring closure of 6c with acetyl chloride (140 0C, 
xylene) to the 2-methylbenzoxazole 5a1' (mp 150-151.5 °C), 
and subsequent methylation (CH3I, K2CO3, acetone) afforded 
the requisite protected benzoxazole 5b (mp 97-98 0C) in a 60% 
overall yield from 6b."-12 

Based upon the previously elaborated symmetry elements 
inherent in chiral ketone 4, its construction via common chiral 
subunits and enolate technology was straightforward. The 
absolute configurations at methyl-bearing stereocenters Ci 1 
and C17 were secured in the chiral four-carbon iodides 7 and 
8, each of which was derived from (S)-(+)-/3-hydroxyiso-
butyric acid (9).13 In direct analogy with the procedure elab-

Me Me Me 

r S — ^Co2H=S r-S 
1-BuPh2SiO I HO I OC 

orated by Fischli,14 9 was transformed without racemization 
to 7 ([a]23

D +3.80° (c 0.413, CHCl3)) and 8 ([a]2i
D +9.98° 

{c 0.239, CHCl3)).11'12 

Based upon model studies and regiochemical considerations, 
hydrazone 1015 was chosen as the 2-butanone equivalent 
(Scheme II). Regiospecific alkylation of 10 (KH) with chiral 
iodide 7 afforded a 91% yield of 11a which was desulfurized 
(Li, NH3) in 91% yield to the hydrazone l ib ." ' 1 2 Alkylation 
of l ib (LDA) with chiral iodobenzyl ether 8 regiospecifically 
afforded hydrazone 12a (80%) as a 1:1 mixture of a-methyl 
diastereoisomers." As previously discussed, this stereo­
chemical ambiguity will be corrected in conjunction with the 
ultimate spiroketalization step (vide supra). Hydrolysis17 and 
ketalization of 12a (77%) completed the synthesis of the chiral 
fragment 12c" corresponding to the dioxaspirane subunit of 
the target structure. 

In the successive assemblage of subunits (Scheme I) via 
carbonyl addition, two new hydroxyl-bearing stereocenters are 
created (cf. 2, C10 and Cis). Again, based upon substructural 
C2 symmetry elements in 2, the proper stereochemical rela­
tionships at both Cio and Cig can be projected from the resi­
dent stereocenters at Cn and Cn via a Cram's rule argu­
ment.18 

Catalytic hydrogenolysis (Pd/C, EtOH, 0.2 equiv of 
Na2C03) of benzyl ether 12c proved to be sluggish under 
conditions which suppressed the interplay of hydroxyl and ketal 
functionalities in 13a. Traces of acid were found to irretrievably 
transform 13a to pyran byproducts. However, efficient de-
benzylation of 12c to 13a was accomplished by benzylic me-
talation (sec-BuLi, THF, -78 0C)19 followed by oxidation 
(B(OMe)3, H2O2). Alcohol 13a was successively oxidized20 

to aldehyde 13b12 and condensed (-100 0C, 3 min) with the 
lithiated benzoxazole 5b (LDA, THF, -100 0C) to give an 
88:12 mixture of the desired alcohol 14a along with the dia-
stereoisomeric alcohol 14b (33% from 12c) which was sepa­
rated by high-pressure liquid chromatography (HPLC).21 The 
stereochemistry of the major isomer 14a was assigned in ac­
cordance with Cram's rule.18 Acid-catalyzed cyclization 
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" (a) (1) KH, KO-f-Bu (0.03 equiv), THF, reflux; (2) 7, 0 0C to 
room temperature, S min. (b) Li, NH3. (c) (1) LDA, THF, 0 0C; (2) 
8. (d) CuCl2, THF-H2O. (e) C(Me)2(CH2OH)21P-TsOH. (f) (1) sec-
BuLi, THF, -78 0C; (2) B(OMe)3, -78 0C to room temperature; (3) 
H2O2, NaOH. (g) CrO3, pyridine. 

(HO2CCO2H, CH3OH, 25 0C) of alcohols 14a and 14b to the 
dihydropyrans 15a and 15b proceeded in 87% yield, while the 
cyclization of 14a cleanly afforded 15a. In practice, it was 
found that chromatographic diastereoisomer resolution was 
more expedient prior to, rather than after, dihydropyran for­
mation. Desilylation with tetra-n-butylammonium fluoride 
(8 equiv, THF, 25 0C) conveniently liberated both the primary 
alcohol and secondary amine functions to afford alcohol 16a 
(60%) which was oxidized to the corresponding aldehyde 16b 
with Collins reagent (80%).20 

The final aldol condensation between aldehyde 16b and the 
zinc enolate derived from ketone 3 (R = f-BOC)22 was exe­
cuted in analogy with conditions (1:1 Et2O-DME, 10 0C, 5 
min) established by House.23 In model studies with benzal-
dehyde, the above zinc enolate afforded predominately the 
threo-aldol adduct (threo:erythro, 70:30) under the reported 
equilibrating conditions. The resultant aldol condensation 
adduct 18,24 without purification, was treated with acidic 
ion-exchange resin (Bio Rad AG 50W-X8, PhCH3, 100 0C, 
10 h) to sequentially induce the following events: (a) spiroketal 
formation; (b) equilibration of the diastereoisomeric Ci5 
methyl epimers; (c) deletion of the pyrrole protecting group. 
The major product (23% from aldehyde 16b), isolated by flash 
chromatography on silica gel, was the methyl ester derived 
from A-23187 (lb), [a]2 3

D -10° (c 0.011, CHCl3).12 A 
sample of lb25 prepared from the natural product was identical 
in all respects (IR, NMR, [a]D, HPLC) with the synthetic 
material. Hydrolysis of lb to the free acid la was carried out 
in quantitative yield with lithium n-propylmercaptide in 
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HMPA.26 Synthetic la,1 ' mp 184.5-186 0C, [a]2 4
D -56° (c 

0.010, CHCl3),27 was identical in all respects (IR, UV, MS, 
1H NMR, 13C NMR, [a]o, mixture melting point) with an 
authentic sample of A-23187. This study establishes the ab­
solute configuration of A-23187 as that depicted in structure 
la. 

Further studies are in progress to enhance the aldol diast-
ereoselection (3+16—18) via the use of boron enolates.28 
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Preparation and Properties of a 
Chlorophyllide-Apomyoglobin Complex 

Sir: 

The spectroscopy of large molecules like chlorophyll poses 
a number of problems because it is difficult to obtain a trans­
parent host matrix for single-crystal optical and magnetic 
resonance investigations. In order to surmount this problem 
we have pursued the simple subterfuge of substituting chlo­
rophyll derivatives in the place of heme in the protein 
apomyoglobin (apoMb). Myoglobin (Mb) is ideal because it 
is available in large quantities, is readily crystallizable, and has 
a very well-characterized crystal structure.K2 Our goals are 
to determine precisely the geometric relationships between the 
chlorophyll molecular structure and (1) the orientations of 
transition dipole moments for the lowest singlet excited states, 
(2) the principal axis systems of the g and hyperfine tensors 
in the radical ions, and (3) the principal axis system of the 
zero-field tensor in the lowest triplet excited state. Each of 
these relationships is required for an analysis of recent pho-
toselection experiments on bacterial photosynthetic reaction 
centers.3"7 A single crystal of this type is very well suited for 
studies of energy transport, since the chromophores should 
interact weakly and are regularly separated (in this respect the 
protein host is much superior to typical lattices, because of the 
large size of the unit cell and regular site substitution). Fur­
thermore, a well-defined water-soluble chlorophyll-protein 
complex offers many interesting possibilities for electro­
chemical and photochemical studies. We report here the 
preparation and characterization of the complex in solution. 

Zinc8 or magnesium pyrochlorophyllides9'10 (Ri in Figure 
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